一、YOLO简介
YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。
经过两次迭代,YOLO目前的最新版本为YOLOv3,在前两版的基础上,YOLOv3进行了一些比较细节的改动,效果有所提升。
本文正是希望可以将源码加以注释,方便自己学习,同时也愿意分享出来和大家一起学习。由于本人还是一学生,如果有错还请大家不吝指出。
本文参考的源码地址为:https://github.com/wizyoung/YOLOv3_TensorFlow
二、代码和注释
文件目录:YOUR_PATH\YOLOv3_TensorFlow-master.py
这一部分代码主要是训练模型的入口,按照要求准备号训练数据之后,就可以从这里开始训练了。 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271# coding: utf-8
from __future__ import division, print_function
import tensorflow as tf
import numpy as np
import logging
from tqdm import trange
import args
from utils.data_utils import get_batch_data
from utils.misc_utils import shuffle_and_overwrite, make_summary, config_learning_rate, config_optimizer, AverageMeter
from utils.eval_utils import evaluate_on_cpu, evaluate_on_gpu, get_preds_gpu, voc_eval, parse_gt_rec
from utils.nms_utils import gpu_nms
from model import yolov3
# setting loggers
# 设置日志记录
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S', filename=args.progress_log_path, filemode='w')
# setting placeholders
# 整个网络的数据输入入口
# 是否是训练阶段,针对BN等操作有用
is_training = tf.placeholder(tf.bool, name="phase_train")
# 这个数据输入入口未被使用,原因不明
handle_flag = tf.placeholder(tf.string, [], name='iterator_handle_flag')
# register the gpu nms operation here for the following evaluation scheme
# 为了后面的模型评估的计算,这里首先定义好在gpu上的nms操作
pred_boxes_flag = tf.placeholder(tf.float32, [1, None, None])
pred_scores_flag = tf.placeholder(tf.float32, [1, None, None])
gpu_nms_op = gpu_nms(pred_boxes_flag, pred_scores_flag, args.class_num, args.nms_topk, args.score_threshold, args.nms_threshold)
##################
# tf.data pipeline
##################
# 输入输入流,我们是从一个文本文件读入数据,因此,可以使用TextLineDataset类来帮助数据读入
train_dataset = tf.data.TextLineDataset(args.train_file)
# 随机打乱
train_dataset = train_dataset.shuffle(args.train_img_cnt)
# 设定batch size
train_dataset = train_dataset.batch(args.batch_size)
# 自定义输入的返回格式,因为文本文件中的数据不一定就是正式的使用数据,可以自定义真正的数据读取操作
train_dataset = train_dataset.map(
lambda x: tf.py_func(get_batch_data,
inp=[x, args.class_num, args.img_size, args.anchors, 'train', args.multi_scale_train, args.use_mix_up],
Tout=[tf.int64, tf.float32, tf.float32, tf.float32, tf.float32]),
num_parallel_calls=args.num_threads
)
# 预先读取
train_dataset = train_dataset.prefetch(args.prefetech_buffer)
# 和训练数据的读取类似,这里读取的是验证集的数据
val_dataset = tf.data.TextLineDataset(args.val_file)
val_dataset = val_dataset.batch(1)
val_dataset = val_dataset.map(
lambda x: tf.py_func(get_batch_data,
inp=[x, args.class_num, args.img_size, args.anchors, 'val', False, False],
Tout=[tf.int64, tf.float32, tf.float32, tf.float32, tf.float32]),
num_parallel_calls=args.num_threads
)
val_dataset.prefetch(args.prefetech_buffer)
# 定义迭代器
iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes)
train_init_op = iterator.make_initializer(train_dataset)
val_init_op = iterator.make_initializer(val_dataset)
# get an element from the chosen dataset iterator
# 利用迭代器获取数据.由于之前我们自定义了数据的读取方式,这里返回的正是我们希望的数据
image_ids, image, y_true_13, y_true_26, y_true_52 = iterator.get_next()
y_true = [y_true_13, y_true_26, y_true_52]
# tf.data pipeline will lose the data `static` shape, so we need to set it manually
# 手动设置shape
image_ids.set_shape([None])
image.set_shape([None, None, None, 3])
for y in y_true:
y.set_shape([None, None, None, None, None])
##################
# Model definition
##################
# 模型定义,这一部分和预测时的一致.
yolo_model = yolov3(args.class_num, args.anchors, args.use_label_smooth, args.use_focal_loss, args.batch_norm_decay, args.weight_decay)
with tf.variable_scope('yolov3'):
pred_feature_maps = yolo_model.forward(image, is_training=is_training)
# 计算损失
loss = yolo_model.compute_loss(pred_feature_maps, y_true)
# 计算预测的结果
y_pred = yolo_model.predict(pred_feature_maps)
# 正则化的损失
l2_loss = tf.losses.get_regularization_loss()
# setting restore parts and vars to update
# 定义Saver,
saver_to_restore = tf.train.Saver(var_list=tf.contrib.framework.get_variables_to_restore(include=args.restore_part))
update_vars = tf.contrib.framework.get_variables_to_restore(include=args.update_part)
# 这一部分是为了tensor board可视化做的准备,主要是一些曲线,反映loss的变化
tf.summary.scalar('train_batch_statistics/total_loss', loss[0])
tf.summary.scalar('train_batch_statistics/loss_xy', loss[1])
tf.summary.scalar('train_batch_statistics/loss_wh', loss[2])
tf.summary.scalar('train_batch_statistics/loss_conf', loss[3])
tf.summary.scalar('train_batch_statistics/loss_class', loss[4])
tf.summary.scalar('train_batch_statistics/loss_l2', l2_loss)
tf.summary.scalar('train_batch_statistics/loss_ratio', l2_loss / loss[0])
# global step
global_step = tf.Variable(float(args.global_step), trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
# 是否使用warm up,默认是True,主要是定义学习率的方法上有些区别
if args.use_warm_up:
learning_rate = tf.cond(tf.less(global_step, args.train_batch_num * args.warm_up_epoch),
lambda: args.learning_rate_init * global_step / (args.train_batch_num * args.warm_up_epoch),
lambda: config_learning_rate(args, global_step - args.train_batch_num * args.warm_up_epoch))
else:
learning_rate = config_learning_rate(args, global_step)
tf.summary.scalar('learning_rate', learning_rate)
#
if not args.save_optimizer:
saver_to_save = tf.train.Saver()
saver_best = tf.train.Saver()
# 优化器
optimizer = config_optimizer(args.optimizer_name, learning_rate)
if args.save_optimizer:
saver_to_save = tf.train.Saver()
saver_best = tf.train.Saver()
# set dependencies for BN ops
# 为BN操作设置依赖
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss[0] + l2_loss, var_list=update_vars, global_step=global_step)
# 设置会话Session
with tf.Session() as sess:
# 初始化全局的variable
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
saver_to_restore.restore(sess, args.restore_path)
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(args.log_dir, sess.graph)
print('\n----------- start to train -----------\n')
best_mAP = -np.Inf
# 开始循环训练
for epoch in range(args.total_epoches):
sess.run(train_init_op)
# 定义记录数据的类,主要是保存当前为止的所有数据的均值
loss_total, loss_xy, loss_wh, loss_conf, loss_class = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
# 对每一个bacth size
for i in trange(args.train_batch_num):
_, summary, __y_pred, __y_true, __loss, __global_step, __lr = sess.run(
[train_op, merged, y_pred, y_true, loss, global_step, learning_rate],
feed_dict={is_training: True})
writer.add_summary(summary, global_step=__global_step)
# 更新均值
loss_total.update(__loss[0], len(__y_pred[0]))
loss_xy.update(__loss[1], len(__y_pred[0]))
loss_wh.update(__loss[2], len(__y_pred[0]))
loss_conf.update(__loss[3], len(__y_pred[0]))
loss_class.update(__loss[4], len(__y_pred[0]))
# 每隔一段时间进行模型的评估,这里主要计算的是recall和precision
# 这里计算的是训练集上的评估结果
if __global_step % args.train_evaluation_step == 0 and __global_step > 0:
# recall, precision = evaluate_on_cpu(__y_pred, __y_true, args.class_num, args.nms_topk, args.score_threshold, args.eval_threshold)
recall, precision = evaluate_on_gpu(sess, gpu_nms_op, pred_boxes_flag, pred_scores_flag, __y_pred, __y_true, args.class_num, args.eval_threshold)
info = "Epoch: {}, global_step: {} | loss: total: {:.2f}, xy: {:.2f}, wh: {:.2f}, conf: {:.2f}, class: {:.2f} | ".format(
epoch, int(__global_step), loss_total.average, loss_xy.average, loss_wh.average, loss_conf.average, loss_class.average)
info += 'Last batch: rec: {:.3f}, prec: {:.3f} | lr: {:.5g}'.format(recall, precision, __lr)
print(info)
logging.info(info)
writer.add_summary(make_summary('evaluation/train_batch_recall', recall), global_step=__global_step)
writer.add_summary(make_summary('evaluation/train_batch_precision', precision), global_step=__global_step)
if np.isnan(loss_total.average):
print('****' * 10)
raise ArithmeticError(
'Gradient exploded! Please train again and you may need modify some parameters.')
# 重置相关的均值记录类
tmp_total_loss = loss_total.average
loss_total.reset()
loss_xy.reset()
loss_wh.reset()
loss_conf.reset()
loss_class.reset()
# 保存模型
# NOTE: this is just demo. You can set the conditions when to save the weights.
if epoch % args.save_epoch == 0 and epoch > 0:
if tmp_total_loss <= 2.:
saver_to_save.save(sess, args.save_dir + 'model-epoch_{}_step_{}_loss_{:.4f}_lr_{:.5g}'.format(epoch, int(__global_step), loss_total.last_avg, __lr))
# 验证集用以评估模型,这一部分和前面类似
# switch to validation dataset for evaluation
if epoch % args.val_evaluation_epoch == 0 and epoch > 0:
sess.run(val_init_op)
val_loss_total, val_loss_xy, val_loss_wh, val_loss_conf, val_loss_class = \
AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
val_preds = []
for j in trange(args.val_img_cnt):
__image_ids, __y_pred, __loss = sess.run([image_ids, y_pred, loss],
feed_dict={is_training: False})
pred_content = get_preds_gpu(sess, gpu_nms_op, pred_boxes_flag, pred_scores_flag, __image_ids, __y_pred)
val_preds.extend(pred_content)
val_loss_total.update(__loss[0])
val_loss_xy.update(__loss[1])
val_loss_wh.update(__loss[2])
val_loss_conf.update(__loss[3])
val_loss_class.update(__loss[4])
# calc mAP
# 计算mAP
rec_total, prec_total, ap_total = AverageMeter(), AverageMeter(), AverageMeter()
gt_dict = parse_gt_rec(args.val_file, args.img_size)
info = '======> Epoch: {}, global_step: {}, lr: {:.6g} <======\n'.format(epoch, __global_step, __lr)
for ii in range(args.class_num):
npos, nd, rec, prec, ap = voc_eval(gt_dict, val_preds, ii, iou_thres=args.eval_threshold, use_07_metric=False)
info += 'EVAL: Class {}: Recall: {:.4f}, Precision: {:.4f}, AP: {:.4f}\n'.format(ii, rec, prec, ap)
rec_total.update(rec, npos)
prec_total.update(prec, nd)
ap_total.update(ap, 1)
mAP = ap_total.avg
info += 'EVAL: Recall: {:.4f}, Precison: {:.4f}, mAP: {:.4f}\n'.format(rec_total.avg, prec_total.avg, mAP)
info += 'EVAL: loss: total: {:.2f}, xy: {:.2f}, wh: {:.2f}, conf: {:.2f}, class: {:.2f}\n'.format(
val_loss_total.avg, val_loss_xy.avg, val_loss_wh.avg, val_loss_conf.avg, val_loss_class.avg)
print(info)
logging.info(info)
if mAP > best_mAP:
best_mAP = mAP
saver_best.save(sess, args.save_dir + 'best_model_Epoch_{}_step_{}_mAP_{:.4f}_loss_{:.4f}_lr_{:.7g}'.format(
epoch, __global_step, best_mAP, val_loss_total.last_avg, __lr))
writer.add_summary(make_summary('evaluation/val_mAP', mAP), global_step=epoch)
writer.add_summary(make_summary('evaluation/val_recall', rec_total.last_avg), global_step=epoch)
writer.add_summary(make_summary('evaluation/val_precision', prec_total.last_avg), global_step=epoch)
writer.add_summary(make_summary('validation_statistics/total_loss', val_loss_total.last_avg), global_step=epoch)
writer.add_summary(make_summary('validation_statistics/loss_xy', val_loss_xy.last_avg), global_step=epoch)
writer.add_summary(make_summary('validation_statistics/loss_wh', val_loss_wh.last_avg), global_step=epoch)
writer.add_summary(make_summary('validation_statistics/loss_conf', val_loss_conf.last_avg), global_step=epoch)
writer.add_summary(make_summary('validation_statistics/loss_class', val_loss_class.last_avg), global_step=epoch)