1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
| import numpy as np import tensorflow as tf import roi_pooling_layer.roi_pooling_op as roi_pool_op import roi_pooling_layer.roi_pooling_op_grad from rpn_msr.proposal_layer_tf import proposal_layer as proposal_layer_py from rpn_msr.anchor_target_layer_tf import anchor_target_layer as anchor_target_layer_py from rpn_msr.proposal_target_layer_tf import proposal_target_layer as proposal_target_layer_py
DEFAULT_PADDING = 'SAME'
def layer(op): def layer_decorated(self, *args, **kwargs): name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) if len(self.inputs) == 0: raise RuntimeError('No input variables found for layer %s.' % name) elif len(self.inputs) == 1: layer_input = self.inputs[0] else: layer_input = list(self.inputs) layer_output = op(self, layer_input, *args, **kwargs) self.layers[name] = layer_output self.feed(layer_output) return self
return layer_decorated
class Network(object): def __init__(self, inputs, trainable=True): self.inputs = [] self.layers = dict(inputs) self.trainable = trainable self.setup()
def setup(self): raise NotImplementedError('Must be subclassed.')
def load(self, data_path, session, saver, ignore_missing=False): ''' 加载模型 :param data_path: 模型文件的路径 :param session: tf 会话 :param saver: tf的Saver类 :param ignore_missing: 是否忽略缺失值 :return: None ''' if data_path.endswith('.ckpt'): saver.restore(session, data_path) else: data_dict = np.load(data_path).item() for key in data_dict: with tf.variable_scope(key, reuse=True): for subkey in data_dict[key]: try: var = tf.get_variable(subkey) session.run(var.assign(data_dict[key][subkey])) print "assign pretrain model " + subkey + " to " + key except ValueError: print "ignore " + key if not ignore_missing: raise
def feed(self, *args): ''' :param args: 不定参数 :return: self ''' assert len(args) != 0
self.inputs = []
for layer in args: if isinstance(layer, basestring): try: layer = self.layers[layer] print layer except KeyError: print self.layers.keys() raise KeyError('Unknown layer name fed: %s' % layer) self.inputs.append(layer) return self
def get_output(self, layer): ''' 根据给定的layer获取相应的网络层 :param layer: 一个字符串,表示网络层的键 :return: 相应的网络层 ''' try: layer = self.layers[layer] except KeyError: print self.layers.keys() raise KeyError('Unknown layer name fed: %s' % layer) return layer
def get_unique_name(self, prefix): ''' 根据给定的前缀生成一个不重复的名称 :param prefix: 一个字符串,表示给定的前缀 :return: 具有该前缀的不重复的名称 ''' id = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1 return '%s_%d' % (prefix, id)
def make_var(self, name, shape, initializer=None, trainable=True): ''' 根据给定的参数生成一个tf variable :param name: variable的名称 :param shape: variable的形状(shape) :param initializer: variable的初始化方法 :param trainable: variabe是否可训练 :return: 满足条件的tf variable ''' return tf.get_variable(name, shape, initializer=initializer, trainable=trainable)
def validate_padding(self, padding): ''' 验证是否是合法的padding方式('SAME'或者'VALID') :param padding: 给定的padding方式 :return: None ''' assert padding in ('SAME', 'VALID')
@layer def conv(self, input, k_h, k_w, c_o, s_h, s_w, name, relu=True, padding=DEFAULT_PADDING, group=1, trainable=True): ''' 卷积函数 :param input: 待卷积的矩阵 :param k_h: 卷积核的高度 :param k_w: 卷积核的宽度 :param c_o: 卷积核的数目 :param s_h: 步长的高度 :param s_w: 步长的宽度 :param name: 操作名称 :param relu: 是否使用relu激活 :param padding: padding方式 :param group: 组数目 :param trainable: 是否可训练 :return: 卷积后的矩阵 ''' self.validate_padding(padding) c_i = input.get_shape()[-1] assert c_i % group == 0 assert c_o % group == 0 convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding) with tf.variable_scope(name) as scope:
init_weights = tf.truncated_normal_initializer(0.0, stddev=0.01) init_biases = tf.constant_initializer(0.0) kernel = self.make_var('weights', [k_h, k_w, c_i / group, c_o], init_weights, trainable) biases = self.make_var('biases', [c_o], init_biases, trainable)
if group == 1: conv = convolve(input, kernel) else: input_groups = tf.split(3, group, input) kernel_groups = tf.split(3, group, kernel) output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)] conv = tf.concat(3, output_groups) if relu: bias = tf.nn.bias_add(conv, biases) return tf.nn.relu(bias, name=scope.name) return tf.nn.bias_add(conv, biases, name=scope.name)
@layer def relu(self, input, name): ''' relu激活 :param input: 待激活的矩阵 :param name: 名称 :return: 激活后的矩阵 ''' return tf.nn.relu(input, name=name)
@layer def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=DEFAULT_PADDING): ''' 最大池化 :param input: 待池化的矩阵 :param k_h: 池化核的高度 :param k_w: 池化核的宽度 :param s_h: 步长的高度 :param s_w: 步长的宽度 :param name: 名称 :param padding: padding方式 :return: 池化后的矩阵 ''' self.validate_padding(padding) return tf.nn.max_pool(input, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding, name=name)
@layer def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=DEFAULT_PADDING): ''' 平均池化 :param input: 待池化的矩阵 :param k_h: 池化核的高度 :param k_w: 池化核的宽度 :param s_h: 步长的高度 :param s_w: 步长的宽度 :param name: 名称 :param padding: padding方式 :return: 池化后的矩阵 ''' self.validate_padding(padding) return tf.nn.avg_pool(input, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding, name=name)
@layer def roi_pool(self, input, pooled_height, pooled_width, spatial_scale, name): ''' roi pooling层, :param input: 需要池化的矩阵信息,里面包含特征层和rois两部分 :param pooled_height: 池化之后的矩阵高度 :param pooled_width: 池化之后的矩阵宽度 :param spatial_scale: 空间尺度,一般是缩放总步长的倒数 :param name: 名称 :return: 池化后的矩阵 ''' if isinstance(input[0], tuple): input[0] = input[0][0]
if isinstance(input[1], tuple): input[1] = input[1][0]
print input return roi_pool_op.roi_pool(input[0], input[1], pooled_height, pooled_width, spatial_scale, name=name)[0]
@layer def proposal_layer(self, input, _feat_stride, anchor_scales, cfg_key, name): '''
:param input: 输入矩阵 :param _feat_stride: 特征步长,一般是一个整数组成的list :param anchor_scales: anchor的尺寸,一般是一个整数组成的list :param cfg_key: 相关的配置信息,是一个字符串 :param name: 名称 :return: 排序之后的TOP N个proposals的batch inds和坐标 ''' if isinstance(input[0], tuple): input[0] = input[0][0] return tf.reshape( tf.py_func(proposal_layer_py, [input[0], input[1], input[2], cfg_key, _feat_stride, anchor_scales], [tf.float32]), [-1, 5], name=name)
@layer def anchor_target_layer(self, input, _feat_stride, anchor_scales, name): ''' Assign anchors to ground-truth targets. Produces anchor classification labels and bounding-box regression targets. 将anchors和ground truth目标对齐,产生对应anchor的分类标签和bbox回归目标。 :param input: 输入矩阵 :param _feat_stride: 特征步长,一般是一个整数组成的list :param anchor_scales: anchor的尺寸,一般是一个整数组成的list :param name: 名称 :return: rpn的分类标签和bbox的回归目标,rpn的bbox的内部权重和外部权重 ''' if isinstance(input[0], tuple): input[0] = input[0][0]
with tf.variable_scope(name) as scope: rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights = tf.py_func( anchor_target_layer_py, [input[0], input[1], input[2], input[3], _feat_stride, anchor_scales], [tf.float32, tf.float32, tf.float32, tf.float32])
rpn_labels = tf.convert_to_tensor(tf.cast(rpn_labels, tf.int32), name='rpn_labels') rpn_bbox_targets = tf.convert_to_tensor(rpn_bbox_targets, name='rpn_bbox_targets') rpn_bbox_inside_weights = tf.convert_to_tensor(rpn_bbox_inside_weights, name='rpn_bbox_inside_weights') rpn_bbox_outside_weights = tf.convert_to_tensor(rpn_bbox_outside_weights, name='rpn_bbox_outside_weights')
return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights
@layer def proposal_target_layer(self, input, classes, name): """ Assign object detection proposals to ground-truth targets. Produces proposal classification labels and bounding-box regression targets. 将目标检测的proposals和ground truth对齐,产生proposa的分类标签和bbox回归目标 :param input: rpn_rois和gt_boxes :param classes: 类别数目 :param name: 名称 :return: rois,rois的标签,bbox目标,bbox内部权重,bbox外部权重 """ if isinstance(input[0], tuple): input[0] = input[0][0] with tf.variable_scope(name) as scope: rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights = tf.py_func(proposal_target_layer_py, [input[0], input[1], classes], [tf.float32, tf.float32, tf.float32, tf.float32, tf.float32])
rois = tf.reshape(rois, [-1, 5], name='rois') labels = tf.convert_to_tensor(tf.cast(labels, tf.int32), name='labels') bbox_targets = tf.convert_to_tensor(bbox_targets, name='bbox_targets') bbox_inside_weights = tf.convert_to_tensor(bbox_inside_weights, name='bbox_inside_weights') bbox_outside_weights = tf.convert_to_tensor(bbox_outside_weights, name='bbox_outside_weights')
return rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights
@layer def reshape_layer(self, input, d, name): ''' 重新整理矩阵的shape :param input: 输入矩阵 :param d: :param name: 名称 :return: 整理之后的矩阵 ''' input_shape = tf.shape(input) if name == 'rpn_cls_prob_reshape': return tf.transpose(tf.reshape(tf.transpose(input, [0, 3, 1, 2]), [input_shape[0], int(d), tf.cast( tf.cast(input_shape[1], tf.float32) / tf.cast(d, tf.float32) * tf.cast(input_shape[3], tf.float32), tf.int32), input_shape[2]]), [0, 2, 3, 1], name=name) else: return tf.transpose(tf.reshape(tf.transpose(input, [0, 3, 1, 2]), [input_shape[0], int(d), tf.cast( tf.cast(input_shape[1], tf.float32) * ( tf.cast(input_shape[3], tf.float32) / tf.cast(d, tf.float32)), tf.int32), input_shape[2]]), [0, 2, 3, 1], name=name)
@layer def feature_extrapolating(self, input, scales_base, num_scale_base, num_per_octave, name): ''' :param input: :param scales_base: :param num_scale_base: :param num_per_octave: :param name: :return: ''' return feature_extrapolating_op.feature_extrapolating(input, scales_base, num_scale_base, num_per_octave, name=name)
@layer def lrn(self, input, radius, alpha, beta, name, bias=1.0): ''' local response normalization,局部响应正则化 :param input: 输入矩阵 :param radius: depth_radius :param alpha: alpha :param beta: beta :param name: 名称 :param bias: 偏置量 :return: lrn之后的矩阵 ''' return tf.nn.local_response_normalization(input, depth_radius=radius, alpha=alpha, beta=beta, bias=bias, name=name)
@layer def concat(self, inputs, axis, name): ''' 按照指定的维度连接若干矩阵 :param inputs: 输入的矩阵序列 :param axis: 连接维度 :param name: 名称 :return: 连接之后的矩阵 ''' return tf.concat(concat_dim=axis, values=inputs, name=name)
@layer def fc(self, input, num_out, name, relu=True, trainable=True): ''' 全连接层 :param input: 输入矩阵 :param num_out: 输出维度 :param name: 名称 :param relu: 是否使用relu激活 :param trainable: 是否可训练 :return: 全连接层 ''' with tf.variable_scope(name) as scope: if isinstance(input, tuple): input = input[0]
input_shape = input.get_shape() if input_shape.ndims == 4: dim = 1 for d in input_shape[1:].as_list(): dim *= d feed_in = tf.reshape(tf.transpose(input, [0, 3, 1, 2]), [-1, dim]) else: feed_in, dim = (input, int(input_shape[-1]))
if name == 'bbox_pred': init_weights = tf.truncated_normal_initializer(0.0, stddev=0.001) init_biases = tf.constant_initializer(0.0) else: init_weights = tf.truncated_normal_initializer(0.0, stddev=0.01) init_biases = tf.constant_initializer(0.0)
weights = self.make_var('weights', [dim, num_out], init_weights, trainable) biases = self.make_var('biases', [num_out], init_biases, trainable)
op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b fc = op(feed_in, weights, biases, name=scope.name) return fc
@layer def softmax(self, input, name): ''' softmax层 :param input: 输入矩阵 :param name: 名称 :return: softmax层 ''' input_shape = tf.shape(input) if name == 'rpn_cls_prob': return tf.reshape(tf.nn.softmax(tf.reshape(input, [-1, input_shape[3]])), [-1, input_shape[1], input_shape[2], input_shape[3]], name=name) else: return tf.nn.softmax(input, name=name)
@layer def dropout(self, input, keep_prob, name): ''' dropout层 :param input: 输入矩阵 :param keep_prob: 保留概率 :param name: 名称 :return: dropout层 ''' return tf.nn.dropout(input, keep_prob, name=name)
|