前言
提升方法(boosting)是一种常用的机器学习方法,应用十分广泛,而且效果非常好,近几年的很多比赛的优胜选手都或多或少使用了提升方法用以提高自己的成绩。
提升方法的本质是通过对每一个训练样本赋予一个权重,并通过改变这些样本的权重,来学习多个分类器,并按照一定的算法将这些分类器组合在一起,通常是线性组合,因为单个分类器往往效果有限,因此组合多个分类器往往会提高模型的性能。
提升方法(boosting)是一种常用的机器学习方法,应用十分广泛,而且效果非常好,近几年的很多比赛的优胜选手都或多或少使用了提升方法用以提高自己的成绩。
提升方法的本质是通过对每一个训练样本赋予一个权重,并通过改变这些样本的权重,来学习多个分类器,并按照一定的算法将这些分类器组合在一起,通常是线性组合,因为单个分类器往往效果有限,因此组合多个分类器往往会提高模型的性能。
Update your browser to view this website correctly. Update my browser now
一、YOLO简介 YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bo
一、YOLO简介 YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bo
一、YOLO简介 YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bo
前言 分类问题是深度学习中的最基本的问题,而分类问题中,我们使用最多的就是利用\(softmax\)函数并结合\(cross \; entropy\)计算最后的损失值\(Loss\)。所以我们有必要对其进行一定的了解,并进行其求导的操作,这里的求导就相当于进行反向传播。 一、参数设置 假设我们输入一