Faster R-CNN源码阅读之三:Faster R-CNN/lib/networks/VGGnet_test.py

一、介绍

   本demo由Faster R-CNN官方提供,我只是在官方的代码上增加了注释,一方面方便我自己学习,另一方面贴出来和大家一起交流。
   该文件中的函数和类的主要目的是定义Faster R-CNN中基于VGG16的网络结构。


Faster R-CNN源码阅读之二:Faster R-CNN/lib/networks/factory.py

一、介绍

   本demo由Faster R-CNN官方提供,我只是在官方的代码上增加了注释,一方面方便我自己学习,另一方面贴出来和大家一起交流。
   该文件中的函数的主要目的是根据所传入的参数选择特定的test网络结构或者train网络结构。


Faster R-CNN源码阅读之一:Faster R-CNN/lib/networks/network.py

一、介绍

   本demo由Faster R-CNN官方提供,我只是在官方的代码上增加了注释,一方面方便我自己学习,另一方面贴出来和大家一起交流。
   该文件中的函数和类的主要目的是产生一个基类,并在类中封装好需要的方法,以后生成网络时可以直接调用已经封装好的方法。


Faster R-CNN源码阅读之零:写在前面

写在前面

   最近在补Faster R-CNN的相关知识,在阅读Faster R-CNN的代码(TensorFlow实现)。将自己阅读过的代码加上注释,贴出来方便大家学习。我会尽量从底层代码向高层代码逐渐说明,以方便后面的代码阅读。

   由于本人还在学习,难免会有些错误,如果大家发现了出错的地方,还请不吝指出。

   Faster R-CNN论文地址:Faster R-CNN

   Github地址:Faster R-CNN


YOLOv3源码阅读:data_utils.py

一、YOLO简介

  YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。

  经过两次迭代,YOLO目前的最新版本为YOLOv3,在前两版的基础上,YOLOv3进行了一些比较细节的改动,效果有所提升。

  本文正是希望可以将源码加以注释,方便自己学习,同时也愿意分享出来和大家一起学习。由于本人还是一学生,如果有错还请大家不吝指出。


YOLOv3源码阅读:train.py

一、YOLO简介

  YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。

  经过两次迭代,YOLO目前的最新版本为YOLOv3,在前两版的基础上,YOLOv3进行了一些比较细节的改动,效果有所提升。

  本文正是希望可以将源码加以注释,方便自己学习,同时也愿意分享出来和大家一起学习。由于本人还是一学生,如果有错还请大家不吝指出。


YOLOv3源码阅读:nms_utils.py

一、YOLO简介

  YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。

  经过两次迭代,YOLO目前的最新版本为YOLOv3,在前两版的基础上,YOLOv3进行了一些比较细节的改动,效果有所提升。

  本文正是希望可以将源码加以注释,方便自己学习,同时也愿意分享出来和大家一起学习。由于本人还是一学生,如果有错还请大家不吝指出。


YOLOv3源码阅读:layer_utils.py

一、YOLO简介

  YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。

  经过两次迭代,YOLO目前的最新版本为YOLOv3,在前两版的基础上,YOLOv3进行了一些比较细节的改动,效果有所提升。

  本文正是希望可以将源码加以注释,方便自己学习,同时也愿意分享出来和大家一起学习。由于本人还是一学生,如果有错还请大家不吝指出。


YOLOv3源码阅读:model.py

一、YOLO简介

  YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。

  经过两次迭代,YOLO目前的最新版本为YOLOv3,在前两版的基础上,YOLOv3进行了一些比较细节的改动,效果有所提升。

  本文正是希望可以将源码加以注释,方便自己学习,同时也愿意分享出来和大家一起学习。由于本人还是一学生,如果有错还请大家不吝指出。


YOLOv3源码阅读:get_kmeans.py

一、YOLO简介

  YOLO(You Only Look Once)是一个高效的目标检测算法,属于One-Stage大家族,针对于Two-Stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了One-Stage。也就是将物体分类和物体定位在一个步骤中完成。YOLO直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。

  经过两次迭代,YOLO目前的最新版本为YOLOv3,在前两版的基础上,YOLOv3进行了一些比较细节的改动,效果有所提升。

  本文正是希望可以将源码加以注释,方便自己学习,同时也愿意分享出来和大家一起学习。由于本人还是一学生,如果有错还请大家不吝指出。


Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×